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1 Introduction

As a student of the Department of Computer Science and Engineering, I am interested in the various
applications of algebraic geometry. During my survey, I find that there are preliminary attempts to apply
theorems in algebraic geometry into application fields, such as combinatorics [1], graph theory [2], and even
machine learning [9, 3]. In this survey, I mainly focus on the applications of combinatorics and graph theory.
Most of the contents are from works [1, 2]. My work is more like a research porters, as some theorems and
proofs are paraphrased from others’ work.

Combinatorics and graph theory deal with arbitrary finite collections of objects such as points, lines, or
graphs. Recently, people try to use tools of algebraic geometry to tackle many problems in these directions
that have been solved by algebraic means, which is called the polynomial method. The work I appreciate
the most is Alon’s Combinatorial Nullstellensatz. From my understanding, these methods have the following
three steps:

1. Treat the problem about some points in a vector space;

2. Find a polynomial of lowest possible degree (or other measure of complexity) that vanishes on the
points;

3. Use tools from algebraic geometry to understand the structure of this zero set and solve the problem.

I also find that some inequalities in algebraic geometry are useful for probability estimation. For example,
the Lang-Weil Bound [6] can be used to improve the probabilistic proof in extremal graph theory problem.
I will also give a brief introduction to it.

2 Alon’s Combinatorial Nullstellensatz and Applications

Alon’s work on his combinatorial Nullstellensatz [1] can be seen as the root of the polynomial method.

First, I will recall Hilbert’s Nullstellensatz learned in the class.

Theorem 1 (Hilbert’s Nullstellensatz). Given an arbitrary set of n-variate polynomials gi over an alge-
braically closed field F , if some other n-variate polynomial f vanishes over the common zeros of the gi ’s,
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then f raised to some power is contained in the ideal generated by the gi ’s. In other words, for such an
f, ∃k ∈ N such that

fk =

m∑
i=1

higi

where m is the number of gi.

The proof is given by the teacher in the class. Thus, here I skip the proof.

To be different, Alon gives combinatorial nullstellensatsz with two restrictions for better applications:

1. There are as many gi ’s as there are dimensions;

2. Make a specific choice of gi ’s that allows concluding that they form a basis for all polynomials vanishing
on their common zeros

The second property leads in particular to a corollary about the existence of non vanishing elements in sets
that are much larger than the degree of a polynomial.

2.1 Alon’s Combinatorial Nullstellensatz

In the original paper, there are two forms of Alon’s Combinatorial Nullstellensatz. I list both of them
below.

Theorem 2 (Alon’s Nullstellensatz 1st form). Let F be an arbitrary field, f ∈ F [x1, . . . , xn]. Let S1, . . . , Sn

be nonempty subsets of F and define gi (xi) =
∏

s∈Si
(xi − s) . If f vanishes over all common zeros of

g1, . . . , gn, then there are polynomials h1, . . . , hn ∈ F [x1, . . . , xn] satisfying deg (hi) ≤ deg(f)− deg (gi) such
that

f =

n∑
i=1

higi

Moreover, if f, g1, . . . , gn lie in R [x1, . . . , xn] for some subring R of F then there are polynomials hi ∈
R [x1, . . . , xn]

In a sense, it states that the gi ’s form a basis for any polynomial vanishing on the entirety of S1×. . .×Sn.
The second form is as follows.

Theorem 3 (Alon’s Nullstellensatz 2nd form). Let F be an arbitrary field, and let f ∈ F [x1, . . . , xn].
Suppose the degree deg(f) of f is

∑n
i=1 ti, where each ti is a nonnegative integer, and suppose the coefficient

of the term
∏n

i=1 x
ti
i in f is nonzero. Then if S1, . . . , Sn are subsets of F with |Si| > ti, there is a point

(s1, . . . , sn) ∈ S1 × . . .× Sn so that
f (s1, . . . , sn) ̸= 0

This theorem can be used to find some polynomial that admits a non root in some product of subsets of
F if and only if some property that we want holds. Then by the conditions of the problem, one shows that
the desired coefficient is nonzero and that the polynomial has small degree, allowing the application of the
Nullstellensatz.

During my survey, I find that the second formulation is more commonly used in applications than the
first one.
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Before proving the two forms of Alon’s Combinatorial Nullstellensatz, I first list the lemma below and
prove it.

Lemma 1. Let f = f (x1, . . . , xn) be a polynomial in n variables over some field F. Suppose that the
degree of f in the ith variable is at most ti, let Si ⊂ F be a set of at least ti + 1 distict elements of F. If
f (x1, . . . , xn) = 0 for all n-tuples (x1, . . . , xn) ∈ S1 × . . .× Sn, then f is the zero polynomial.

Proof. By induction on n. n = 1. This is the well-known statement that a polynomial of degree at most d
cannot have more than d roots. n > 1. Rewrite f as a polynomial in xn :

f (x1, . . . , xn−1, xn) =

tn∑
i=1

fi (x1, . . . , xn−1)x
i
n

Fixing some tuple (s1, . . . , sn−1) ∈ S1 × . . . × Sn−1, we see that as a single variable polynomial (in the
nth coordinate), by hypothesis, f is identically zero on Sn. Thus ∀1 ≤ i ≤ n−1, fi (s1, . . . , sn−1) = 0. Hence
each fi is a polynomial in n− 1 variables such that its degree in the j th variable is at most tj that vanishes
on all points (s1, . . . , sn−1) ∈ S1 × . . .× Sn−1, with |Sj | ≥ tj + 1

Then, induction hypothesis can be used to get that fi are zero polynomials, and conclude that f must
also be the zero polynomial.

It is hard to prove the second theorem directly from this lemma. The reason is that the condition that
the degree of f in the i th variable is at most ti is not necessarily satisfied. Indeed, we could have a term
that has degree in xi which is ti + 1 while the total degree of f is still exactly

∑n
i=1 ti.

Proof of Alon’s Nullstellensatz 1st form. Define ti = |Si| − 1 and gi (xi) =
∏

s∈Si
(xi − s). Isolating the

highest degree term of gi we write

gi (xi) = xti+1
i −

ti∑
j=0

gijx
j
i

When xi ∈ Si we have gi (xi) = 0 and thus the equality xti+1
i =

∑ti
j=0 gijx

j
i . Using this equality, we can

modify f by repeatedly replacing every instance of xk
i where k > ti by x

k−(ti+1)
i

∑ti
j=0 gijx

j
i .

Let the newly obtained polynomial be f̃ , we can check that we can rearrange f− f̃ so that it is of the form∑n
i=1 higi, where each polynomial hi has degree at most deg(f)− deg (gi). Looking at a single substitution,

we see that

f − f̃ = hi(x)x
ti+1
i − hi(x)

ti∑
j=0

gijx
j
i

= higi

One can then generalize this after a notation heavy calculation. Note further that f̃ now has degree at most
ti in the i th variable.

Moreover, as we replaced terms of f by term that evaluate to the same values on the cross product of the
Si ’s, we have equality between f and f̃ for all x ∈ S1 × . . .×Sn. Thus f̃ is zero on S1 × . . .×Sn. Applying
the lemma, we conclude that fi is the zero polynomial. Thus

f =

n∑
i=1

higi
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I think the proof is rather similar to the proof of Hilbert’s Nullstellensatz in the class. The key point is
to use the equality xti+1

i =
∑ti

j=0 gijx
j
i to reduce the degree of monomials iteratively.

The second form of Alon’s Nullstellensatz can be derived from the first form.

Proof of Alon’s Nullstellensatz 2nd form. Without loss of generality, let |Si| = ti +1. If we assume that f is
zero on the whole S1 × . . .× Sn. Then we may write it as

∑n
i=1 higi with gi defined as previously. But then

we clearly have a contradiction as if we look at the coefficient of the term
∏n

j=1 x
tj , it must come from at

least one of the summands gihi. This means that hi must have degree at least
∑

j ̸=i tj . But then the term
gihi has degree 1 +

∑n
j=1 tj , which is larger than the degree of f . This is a ontradiction and we complete

the proof.

2.2 Applications in Algebra Problems

Theorem 2.1 are essentially useful for tackling algebra problems. Here, I list a classical problem about
finite field which are solved by Theorem 2.1.

Theorem 4 (Chevalley-Warning). Let p be a prime, let P1, . . . , Pm ∈ Fp [x1, . . . , xn]. If n >
∑m

i=1 deg (Pi)
and the polynomials Pi have a common zero (c1, . . . , cn), then they have another common zero.

Proof. Suppose by contradiction that the point (c1, . . . , cn) is the only common zero. First, we note that for
a fixed point (s1, . . . , sn) ∈ Fn

p , the following holds:

m∏
i=1

(
1− Pi (s1, . . . , sn)

p−1
)
=

{
1, if ∀i, Pi (s1, . . . , sn) = 0

0, if ∃ i s.t. Pi (s1, . . . , sn) ̸= 0

In other words, this product is an indicator of the common zeros of the Pi ’s. We can further note that its
degree is at most (p− 1)

∑m
i=1 deg (Pi). Next, we can define an indicator of the point (c1, . . . , cn) :

n∏
j=1

∏
c∈Zp,c ̸=cj

(sj − c) =

{
1/δ, if (s1, . . . , sn) = (c1, . . . , cn)

0, otherwise

Where δ is some non zero constant.

Now if we define the following polynomial:

f (x1, . . . , xn) =

m∏
i=1

(
1− Pi (x1, . . . , xn)

p−1
)
− δ

n∏
j=1

∏
c∈Zp,c ̸=cj

(xj − c)

We have by the above observations that f vanishes both at (c1, . . . , cn) and at every other point of Fn
p

(since by assumption (c1, . . . , cn) is the only common zero). We can also see the coefficient of the term∏n
i=1 x

p−1
i comes only from the second sum since by an above remark, the degree of the first term is

(p− 1)
∑m

i=1 deg (Pi) < n(p− 1). This means that the coefficient must be δ, thus nonzero.

Applying the second Nullstellensatsz to the set Fp × . . .× Fp, we conclude that f must have a non root
in Fn

p , which is a contradiction.
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There exists a stronger version of this theorem, which states that the number of common zeros needs in
fact to be a multiple of the characteristic of the field. However, it seems hard to derive this result from the
Nullstellensatsz.

One is tempted approach this stronger version using a modification of the above polynomial:

f (x1, . . . , xn) =

m∏
i=1

(
1− Pi (x1, . . . , xn)

p−1
)
−

k∑
i=1

δk

n∏
j=1

∏
c∈Zp,c ̸=cij

(xj − c)

where k is the number of common roots and ci = (ci1, . . . , cin) the common roots. But this approach fails
as
∑k

i=1 δk might be zero.

2.3 Applications in Combinatorics Problems

The second applications is in additive combinatorics problems.

Theorem 5 (Cauchy-Davenport). Given A, B non-empty subsets of Fp, for some prime p, the following
holds:

|A+B| ≥ min{p, |A|+ |B| − 1}

This is a tight bound. If A and B are two singletons respectively, |A+B| = 1, we have the bound.

Proof. When |A|+ |B| > p then taking any g ∈ Fp, the sets A and g −B must intersect, thus we can write
g = a+ b for some a ∈ A, b ∈ B.

Otherwise, assume by contradiction that |A + B| < |A| + |B| − 1. Take a subset C of Fp such that
A+B ⊂ C and |C| = |A|+ |B| − 2. Then if we define

f(x, y) =
∏
c∈C

(x+ y − c)

we have that f(a, b) = 0 for a ∈ A, b ∈ B, since A + B ⊂ C. Furthermore, the coefficient of the monomial

x|A|−1y|B|−1 is
(

|C|
|A| − 1

)
. Since |C| = |A| + |B| − 2 and |A| + |B| ≤ p, this coefficient is nonzero in Fp.

Finally, this monomial is a maximum degree term in F. We can thus apply the Nullstellensatz to A×B and
derive a contradiction.

From the paper, I also notice that the statement is not true for general finite fields. If the characteristic
of the field can divide the coefficient of the x|A|−1y|B|−1, the above proof can not go through.

2.4 Applications in Graph Problems

I think it is very interesting to apply the theorem into graph problems. Berge and Sauer conject that
any simple 4-regular graph contains a 3-regular subgraph. This is proved by Táskinov [7] in 1982.

Theorem 6. In any 4-regular simple graph, there exists a 3-regular subgraph.
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This proposition is almost a special case (when p = 3 ) of the following theorem. But it does not quite
work with a perfectly 4-regular graph. That being said, if we allow ourselves to slightly raise the average
degree (eg. by adding an extra edge), we get that the newly obtained graph has a 3-regular subgraph.

Theorem 7. For any prime p, any loopless graph G = (V,E) with average degree bigger than 2p − 2 and
maximum degree at most 2p− 1 contains a p-regular subgraph.

Proof. For each edge e ∈ E we define a variable xe. The idea is to use these variables as selectors for the
edges: xe = 1 means e is in the subgraph, otherwise it is not. Let av,e = 1 if v is incident to e, 0 otherwise.

Since the maximum degree is 2p − 1, for a fixed v ∈ V,
∑

e∈E av,exe = 0(modp) is equivalent to saying
that either exactly p of the xe are 1 or they are all 0 (i.e. p or no edges have been chosen, respectively).
Now define the following polynomial:

f =
∏
v∈V

1−

(∑
e∈E

av,exe

)p−1
−

∏
e∈E

(1− xe)

By the above observation, the first product is nonzero if and only if each individual vertex has either degree
0 or p. But the second product is 1 if and only if all xe are zero (i.e. no edges have been picked), and
otherwise zero. Thus f is zero for any assignment of xe unless at least one xe is nonzero and all vertices
have degree p or zero, i.e. the subgraph induced by the selected edges is p-regular.

The degree of the first product is (p − 1)|V |, and by our initial hypothesis on the average degree we
2|E| > |V |(2p− 2). Hence the coefficient of

∏
e∈E xe comes only from the second product. We can see that

it is nonzero.

Applying the Nullstellensatsz to the set {0, 1}|E|, we obtain that f has a non root in this set, i.e. G has
a p-regular subgraph.

The above proof takes each edge as the variable and let the selected edges to be the subgraph. In fact, we
can also take vertices as variables. I want to share the application of Theorem 2.1 in another graph problem
which takes vertices as variables.

Theorem 8. Let p be a prime, and let G = (V,E) be a graph on a set of |V | > d(p− 1) vertices. Then there
is a nonempty subset U of vertices of G such that the number of cliques of d vertices of G that intersect U
is 0 modulo p.

Proof. For each subset I of vertices of G, let K(I) denote the number of copies of Kd in G that contain I.
Associate each vertex v ∈ V with a variable xv, and consider the polynomial

F =
∏
v∈V

(1− xv)− 1 +G,

where

G =

 ∑
∅̸=I⊂V

(−1)|I|+1K(I)
∏
i∈I

xi

p−1

over GF (p). Since K(I) is obviously zero for all I of cardinality bigger than d, the degree of this polynomial
is |V |, as the degree of G is at most d(p− 1) < |V |. Moreover, the coefficient of

∏
v∈V xv in F is (−1)|V | ̸= 0.

Therefore, by Theorem 1.2, there are xv ∈ {0, 1} for which F (xv : v ∈ V ) ̸= 0. Since F vanishes on the all 0
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vector, it follows that not all numbers xv are zero, and hence that G (xv : v ∈ V ) ̸= 1, implying, by Fermat’s
little Theorem that ∑

∅̸=I⊂V

(−1)|I|+1K(I)
∏
i∈I

xi ≡ 0(modp).

However, the left hand side of the last congruence is precisely the number of copies of Kd that intersect the set
U = {v : xv = 1}, by the Inclusion-Exclusion formula. Since U is nonempty, the desired result follows.

3 Lang-Weil Bound and Applications

3.1 Lang-Weil Bound

In the survey, I find that algebraic geometry method can be used to construct probability measure
with certain property. For example, the probability measure can not be so “continuous” and make the
approximation tighter.

One excellent work is by Boris Bukh [2] in 2014, which utilizes Lang-Weil Bound [6] to guarantee such
property of probability measure and applies it to the graph problem.

The following is Lang-Weil Bound theorem.

Theorem 9 (Lang-Weil Bound, 1954 [6]). For every s and d there exists a constant C such the following
holds: Suppose f1(Y ), . . . , fs(Y ) are s polynomials on Fs

q of degree at most d, and consider the set

W =
{
y ∈ Fs

q : f1(y) = · · · = fs(y) = 0
}
.

Then exactly one of the following holds:

1. (Zero-dimensional case) |W | ≤ C,

2. (Higher-dimensional case) |W | ≥ q−C
√
q. The constant C depends only on s and the degrees of f ’s.

The proof of this theorem is complicated for me. Some concepts like the degree of variety, and some
results like Bezout’s inequality seem fresh for me. If the reader is interested, I recommend the references [6,
2].

3.2 Turán’s Question for Complete Bipartite

In extremal graph theory, Turán question is famous: how many edges can a graph have if it does not
contain H as a subgraph?

Let ex(n,H) be the maximum number of edges in any n-vertex H-free graph. Turán [8] determined
ex(n,H) when H is a clique.

Theorem 10. If H = Kr, then the maximum ex(n,H) is attained by a complete (r− 1)-partite graph whose
parts are as equal as possible.

The proof of this theorem can be found in the elementary book of graph theory.
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In 1965, Erdős-Stone and Simonovits [4] showed that for every graph H the largest H-free graph is
appropriately close to a complete multipartite graph on χ(H) − 1 parts, where χ(H) is the chromatic
number of H.

Theorem 11.
ex(n,H) =

(
1− 1

χ(H)− 1

)(
n
2

)
+ o

(
n2
)

(1)

We can interpret 1 − 1
χ(H)−1 as the fraction of the total number of edges in the complete graph. When

χ(H) ≥ 3, the fraction is positive and Equation (1) is a satisfactory asymptotics.

However, if we want to determine ex(n,H) for bipartite graph H, the above formula fails. Because we
have χ(H) = 2 and the main term in Equation (1) vanishes, leaving a notoriously hard open problem of
finding an asymptotics for ex(n,H) when H is bipartite.

In 1954, people determined a bound of ex(n,H) for bipartite graph as follows. I also give the original
proof.

Theorem 12 (Kovári-Sós-Turán, 1954 [5]). For each s and t there is a constant C such that ex (n,Ks,t) ≤
Cn2−1/s.

The following proof is not necessarily important in this paper. The reader can skip it without any worry.

Proof. We let C be a large constant (to be specified later). Suppose G = (V,E) is a Ks,t-free graph. It
suffices to prove that G contains a vertex of degree less than Cn1−1/s, for then we may remove it, and
apply the induction on the number of vertices since C(n − 1)2−1/s + Cn1−1/s ≤ Cn2−1/s. Assume, for
contradiction’s sake, that deg(v) ≥ Cn1−1/s for all v ∈ V .

Let N denote the number of copies K1,s in G. We count N in two different ways. On one hand, denoting
by deg(v) the degree of v ∈ V , we obtain

N =
∑
v∈V

(
deg(v)

s

)

the summand being the number of copies of K1,s with the apex v. Since deg(v) ≥ Cn1−1/s for all v and C

is sufficiently large in terms of s, we have
(

deg(v)
s

)
≥
(
1
2Cn1−1/s

)s
/s! = 2−sCsns−1/s! and hence

N ≥ 2−sCsns/s! (2)

On the other hand, if {u1, . . . , us} is any set of s vertices, then no more than t− 1 vertices can be adjacent
to all of these s vertices, as G is Ks,t-free. Thus

N ≤ (t− 1)

(
n
s

)
. (3)

Combining (2) and (3) together with the simple bound (t− 1)

(
n
s

)
≤ (t− 1)ns/s! yields a contradiction

unless C ≤ 2(t− 1)1/s.
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3.3 Random Algebraic Construction

The probabilistic method for this problem is best ex (n,Ks,t) = Ω
(
n2− 2

s+1

)
, which is not as good as the

expected lower bound.

The general procedure for obtaining the lower bound of a formula using a probabilistic method is to
consider a random graph with an expected number of edges, then count the approximate number of edges
in the random graph, destroy them all, and finally count the remaining edges of the graph.

Why doesn’t this approach have a good lower bound? I think the problem lies in the number of numbers
Ks,t. For example, for a set of points s, we can only calculate the expected number of U by estimating
the number of common neighborhood points P(|N(U)| ⩾ t). The problem here is that the probability given
by the random graph model is continuous. This results in a smooth probability distribution with a long,
de-decaying tail, even though P(|N(U)| ⩾ t) has a low expectation. This makes it extremely difficult to
control the number of formulas, dragging down the value of the formula in the random graph so that there
are not as many edges to be obtained in this way.

We discussed earlier that one of the reasons why pure probability methods are so bad is that we define
random graph models that are smooth/continuous in their probability distributions. Algebraic methods tend
to imply discrete/non-smooth. There’s a naive intuition that if we can embed something that’s not smooth
on top of the probabilistic approach, maybe we’ll get better results.

In the work [2], Bukh focus on the best-understood class of bipartite graphs, the complete bipartite
graphs. I think the questions the paper want to deal are as follows:

1. The paper need to find a random graph substitute, polynomial on finite field seems to be a good choice,
we can specify the upper bound of polynomial degree,

2. How do we define the points of our constructed graph and the rules for linking points to points?

3. How to characterize Ks,t from the view of polynomial?

4. What conclusions from algebraic geometry can be applied?

Let q be a prime power, and let Fq be the finite field of order q. We shall assume that s ≥ 4 is fixed, and
that q is sufficiently large as a function of s. Let d = s2 − s+ 2, n = qs. The graph G that we will construct
in this section will be bipartite. Each of the two parts, L and R, will be identified with Fs

q

Suppose f is a polynomial in 2s variables over Fq. We write the polynomial as f(X,Y ) where X =
(X1, . . . , Xs) and Y = (Y1, . . . , Ys) are the first and the last s variables respectively. Such a polynomial
induces a bipartite graph in the natural way: pair (x, y) ∈ L×R is an edge if f(x, y) = 0. Let P ⊂ Fq[X,Y ]
be the set of all polynomials of degree at most d in each of X and Y . Pick a polynomial f uniformly from P
and let G be the associated graph. We shall show that G, on average, contains many edges but hardly any
copies of Ks,t for t = sd +1. We will then remove few vertices from G to render G completely free of Ks,t ’s
while still leaving many edges left.

We show that G behaves very similarly to the random graph that we constructed in the previous section
with p = 1/q. We begin by counting the number of edges in G.

Lemma 2. For every u, v ∈ Fs
q, we have Pr[f(u, v) = 0] = 1/q. In particular, the expected number of edges

in G is n2/q.
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Proof. Fix u, v ∈ Fs
q. Let P0 = {f ∈ P : f(0, 0) = 0} be the set of polynomials with zero constant term.

Every f ∈ P can be written uniquely as f = g + h, where g ∈ P0 and h is a constant. So, a way to sample
f ∈ P uniformly is to first sample g from P0, and then sample h from Fq. It is clear that having chosen g,
out of q possible choices for h exactly one choice results in f(u, v) = 0.

To count the copies of Ks,t we shall look at the distribution of |N(U)|, where U is an arbitrary set of s
vertices in the same part. We shall focus on the case U ⊂ L, the other case being symmetric. Computing
the distribution of |N(U)| directly is hard. Instead, we will compute moments of |N(U)| with aid of the
following two lemmas:

Lemma 3. Suppose u, u′ ∈ Fs
q are two distinct points, and L is a linear function chosen uniformly among

all linear functions Fs
q → Fq. Then Pr [ Lu = Lu ′] = 1/q.

Proof. Since u and u′ are distinct, there is a coordinate in which they differ. Without loss of generality, it
is the first coordinate. A linear function is uniquely determined by its action on the basis vectors e1, . . . , es.
Sample L by first sampling Le2, . . . , Les and then sampling Le1. Having chosen Le2, . . . , Les there is precisely
one choice for Le1 such that Lu = Lu′.

Lemma 4. Suppose r, s ≤ min(
√
q, d). Let U ⊂ Fs

q and V ⊂ Fs
q be sets of size s and r respectively. Then

Pr[f(u, v) = 0 for all u ∈ U, v ∈ V ] = q−sr.

I think the proof of this lemma is similar to the above lemmas, but with more dedicated operations. I
omit it for clarity.

The following operations is common in graph techniques by calculating the moments of a randan variable.
For a fixed set U ⊂ Fs

q of size s. For v ∈ Fs
q, put I(v) = 1 if f(u, v) = 0 for all u ∈ U , and I(v) = 0 if

f(u, v) ̸= 0 for some u ∈ U . The d ’th moment of |N(U)| is easily computed by writing |N(U)| as a sum of
I(v) ’s and expanding:

E
[
|N(U)|d

]
= E


∑

v∈Fs
q

I(v)

d
 = E

 ∑
v1,...,vd∈Fs

q

I (v1) I (v2) · · · I (vd)


=

∑
v1,...,vd∈Fs

q

E [I (v1) I (v2) · · · I (vd)]

The preceding lemma tells us that the summand is equal to q−rs if there are exactly r distinct points among
v1, . . . , vd. Let Mr be the number of surjective functions from a d-element set onto an r element set, and let
M =

∑
r≤d Mr. Breaking the sum according to the number of distinct elements among v1, . . . , vd, we see

that
E
[
|N(U)|d

]
≤
∑
r≤d

(
qs

r

)
Mrq

−rs ≤
∑
r≤d

Mr = M.

We can use the moments to bound the probability that |N(U)| is large:

Pr[|N(U)| ≥ λ] = Pr
[
|N(U)|d ≥ λd

]
≤

E
[
|N(U)|d

]
λd

≤ M

λd
.

The following is important, where the Lang-Weil Bound limits the choice of N(U). For s polynomials
f(u, ·) as u ranges over U . The preceding lemma then says that either |N(U)| ≤ C or |N(U)| ≥ q/2 if q is
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sufficiently large in terms of s. Notice that when q is large, q −C
√
q > q/2. From Lang-Weil Bound (9), we

have
Pr[|N(U)| > C] = Pr[|N(U)| ≥ q/2] ≤ M

(q/2)d
.

Call a set of s vertices of G bad if their common neighborhood has more than C vertices. Let B the number
of bad sets. The above shows that

E[B] ≤ 2

(
n
s

)
M

(q/2)d
= O

(
qs−2

)
. (4)

Remove a vertex from each bad set counted by B from G to obtain graph G′. Since no vertex has degree
more than qs, the number of edges in G′ is at most Bqs fewer than in G. Hence, the expected number of
edges in G′ is at least

n2/q − E[B]qs = Ω
(
n2−1/s

)
where n2/q comes from Lemma 2 , and the estimation of E[B] comes from Equation (4). Therefore, there
exists a graph with at most 2n vertices and Ω

(
n2−1/s

)
edges, but without Ks,C+1.

4 Conclusion

In this work, I survey preliminary attempts to apply theorems in algebraic geometry into application
fields, such as combinatorics and graph theory.

I learn Alon’s Combinatorial Nullstellensatz and its versatility. These methods need dedicated construc-
tion of the polynomials to make the contradiction.

I also learn the use of Lang-Weil Bound to guarantee the property of specific probability measures.
However, I do have difficulties understanding the proof of Lang-Weil Bound.

From my perspective, though an engineer use theorems most of the time, it is not enough to just utilize
these theorems in algebraic geometry. It is important to understand why we get these theorems and why
these theorems capture the essence of the problems in such a subtle way.
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